Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6491, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499619

RESUMO

The EGFR tyrosine kinase inhibitor osimertinib has been approved for the first-line treatment of EGFR-mutated Non-Small Cell Lung Cancer (NSCLC) patients. Despite its efficacy, patients develop resistance. Mechanisms of resistance are heterogeneous and not fully understood, and their characterization is essential to find new strategies to overcome resistance. Ceramides are well-known regulators of apoptosis and are converted into glucosylceramides (GlcCer) by glucosylceramide synthase (GCS). A higher content of GlcCers was observed in lung pleural effusions from NSCLC patients and their role in osimertinib-resistance has not been documented. The aim of this study was to determine the therapeutic potential of inhibiting GCS in NSCLC EGFR-mutant models resistant to osimertinib in vitro and in vivo. Lipidomic analysis showed a significant increase in the intracellular levels of glycosylceramides, including GlcCers in osimertinib resistant clones compared to sensitive cells. In resistant cells, the GCS inhibitor PDMP caused cell cycle arrest, inhibition of 2D and 3D cell proliferation, colony formation and migration capability, and apoptosis induction. The intratumoral injection of PDMP completely suppressed the growth of OR xenograft models. This study demonstrated that dysregulation of ceramide metabolism is involved in osimertinib-resistance and targeting GCS may be a promising therapeutic strategy for patients progressed to osimertinib.


Assuntos
Acrilamidas , Carcinoma Pulmonar de Células não Pequenas , Glucosiltransferases , Indóis , Neoplasias Pulmonares , Pirimidinas , Humanos , Compostos de Anilina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
2.
Biochem Pharmacol ; : 116161, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522556

RESUMO

Osimertinib, a tyrosine kinase inhibitor targeting mutant EGFR, has received approval for initial treatment in patients with Non-Small Cell Lung Cancer (NSCLC). While effective in both first- and second-line treatments, patients eventually develop acquired resistance. Metabolic reprogramming represents a strategy through which cancer cells may resist and adapt to the selective pressure exerted by the drug. In the current study, we investigated the metabolic adaptations associated with osimertinib-resistance in NSCLC cells under low glucose culture conditions. We demonstrated that, unlike osimertinib-sensitive cells, osimertinib-resistant cells were able to survive under low glucose conditions by increasing the rate of glucose and glutamine uptake and by shifting towards mitochondrial metabolism. Inhibiting glucose/pyruvate contribution to mitochondrial respiration, glutamine deamination to glutamate, and oxidative phosphorylation decreased the proliferation and survival abilities of osimertinib-resistant cells to glucose starvation. Our findings underscore the remarkable adaptability of osimertinib-resistant NSCLC cells in a low glucose environment and highlight the pivotal role of mitochondrial metabolism in mediating this adaptation. Targeting the metabolic adaptive responses triggered by glucose shortage emerges as a promising strategy, effectively inhibiting cell proliferation and promoting cell death in osimertinib-resistant cells.

3.
Target Oncol ; 18(6): 953-964, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37855989

RESUMO

BACKGROUND: Cell-cycle regulators are mutated in approximately 40% of all cancer types and have already been linked to worse outcomes in non-small cell lung cancer adenocarcinomas treated with osimertinib. However, their exact role in osimertinib resistance has not been elucidated. OBJECTIVE: In this study, we aimed to evaluate how the CDK4/6-Rb axis may affect the sensitivity to osimertinib. METHODS: We genetically increased the level of CCND1 (Cyclin D1) and reduced the levels of CDKN2A (p16) in two different adenocarcinoma cell lines, PC9 and HCC827. We also retrospectively evaluated the outcome of patients with epidermal growth factor receptor-mutated advanced non-small cell lung cancer depending on their level of Cyclin D1 and p16. RESULTS: The modified clones showed higher proliferative capacity, modifications in cell-cycle phases, and higher migratory capacity than the parental cells. Cyclin D1-overexpressing clones were highly resistant to acute osimertinib treatment. CDKN2A knockdown conferred intrinsic resistance as well, although a longer time was required for adaption to the drug. In both cases, the resistant phenotype was epidermal growth factor receptor independent and associated with a higher level of Rb phosphorylation, which was unaffected by osimertinib treatment. Blocking the phosphorylation of Rb using abemaciclib, a CDK4/6 inhibitor, exerted an additive effect with osimertinib, increasing sensitivity to this drug and reverting the intrinsic resistant phenotype. In a group of 32 patients with epidermal growth factor receptor-mutated advanced non-small cell lung cancer, assessed for Cyclin D1 and p16 expression, we found that the p16-deleted group presented a lower overall response rate compared with the control group. CONCLUSIONS: We conclude that perturbation in cell-cycle regulators leads to intrinsic osimertinib resistance and worse patient outcomes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Ciclina D1/genética , Ciclina D1/farmacologia , Ciclina D1/uso terapêutico , Estudos Retrospectivos , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Mutação , Inibidores de Proteínas Quinases/uso terapêutico
4.
Front Oncol ; 12: 942341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936714

RESUMO

Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer with a poor prognosis and limited treatment options. Considering that alterations of the CDK4/6-cyclin D-Rb pathway occur frequently in HCC, we tested the efficacy of two CDK4/6 inhibitors, abemaciclib and ribociclib, in combination with lenvatinib, a multi-kinase inhibitor approved as first-line therapy for advanced HCC, in a panel of HCC Rb-expressing cell lines. The simultaneous drug combinations showed a superior anti-proliferative activity as compared with single agents or sequential schedules of treatment, either in short or in long-term experiments. In addition, the simultaneous combination of abemaciclib with lenvatinib reduced 3D cell growth, and impaired colony formation and cell migration. Mechanistically, these growth-inhibitory effects were associated with a stronger down-regulation of c-myc protein expression. Depending on the HCC cell model, reduced activation of MAPK, mTORC1/p70S6K or src/FAK signaling was also observed. Abemaciclib combined with lenvatinib arrested the cells in the G1 cell cycle phase, induced p21 accumulation, and promoted a stronger increase of cellular senescence, associated with elevation of ß-galactosidase activity and accumulation of ROS, as compared with single treatments. After drug withdrawal, the capacity of forming colonies was significantly impaired, suggesting that the anti-tumor efficacy of abemaciclib and lenvatinib combination was persistent. Our pre-clinical results demonstrate the effectiveness of the simultaneous combination of CDK4/6 inhibitors with lenvatinib in HCC cell models, suggesting that this combination may be worthy of further investigation as a therapeutic approach for the treatment of advanced HCC.

5.
Cells ; 11(3)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35159223

RESUMO

Lung cancer is the leading cause of cancer deaths worldwide. Most of lung cancer cases are classified as non-small cell lung cancers (NSCLC). EGFR has become an important therapeutic target for the treatment of NSCLC patients, and inhibitors targeting the kinase domain of EGFR are currently used in clinical settings. Recently, an increasing interest has emerged toward understanding the mechanisms and biological consequences associated with lipid reprogramming in cancer. Increased uptake, synthesis, oxidation, or storage of lipids has been demonstrated to contribute to the growth of many types of cancer, including lung cancer. In this review, we provide an overview of metabolism in cancer and then explore in more detail the role of lipid metabolic reprogramming in lung cancer development and progression and in resistance to therapies, emphasizing its connection with EGFR signaling. In addition, we summarize the potential therapeutic approaches targeting lipid metabolism for lung cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos , Neoplasias Pulmonares/metabolismo , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...